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Endless debate on aging and disease 
 

For decades, one of the most debated questions in 

gerontology was whether aging is a disease or the norm.  

At present, excellent reasoning suggests aging should be 

defined as a disease [1-7]. I tend to define aging a 

disease, even though it is the norm.  Vladimir Dilman 

referred to aging as “normal disease” [8, 9]. 

 

As I emphasized in my publications, aging is not 

programmed.   I have explicitly stated as such even in 

my article titled “Aging is not programmed: genetic 

pseudo-program a shadow of development growth” 

(PMID: 24240128). Aging is a normal continuation of 

the normal develop-mental program, so it is NOT a 

program but a purposeless, unintended quasi-program 

[10-16]. Yet, aging is also a deadly disease because it 

inevitably leads to death.  

 

Indeed, aging is “the sum of all age-related diseases” 

and this “sum is the best biomarker of aging” [17]. 

Aging and its diseases are inseparable, as these diseases 

are manifestations of aging.  Of course, any one age-

related disease can occur at a young age due to genetic 

and environmental factors. What is important is that 

aging is sufficient   to   cause   all   age-related  diseases,  

 

sooner or later, without dependence on genetic or 

environmental factors [18]:  if Alzheimer’s disease or 

type 2 diabetes is not diagnosed during ones life time, it 

is only because cancer or a stroke terminates life before  

 

Alzheimer’s diseases or type 2 diabetes can be 

diagnosed (and vice versa).  
 

Aging is the sum of pre-diseases and diseases 
 

Aging is an increase in the probability of death due to 

age-related diseases, which are late manifestations of 

aging [18]. Diseases are preceded by pre-diseases. For 

example, diabetes is diagnosed when fasting glucose 

levels are higher than 125 mg/dl, while levels of 100 to 

125 mg/dl are considered pre-diabetes.  Remarkably, 

diabetic complications such as nephropathy and 

retinopathy often develop before type 2 diabetes itself 

(see for references [19]). Although not formally a 

disease, pre-diabetes is currently treated to prevent 

diabetes [20-23]. Moreover, pre-diabetes is initiated by 

underlying processes that we will call pre-pre-diabetes, 

which arise while fasting glucose levels and glucose 

tolerance are still normal, though insulin levels are 

increased (hyperinsulinemia), indicating mild insulin 

resistance [24]. Hyperinsulinemia in healthy adults with 

normal glucose levels is predictive of type 2 diabetes 
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ABSTRACT 
 

Is aging a disease? It does not matter because aging is already treated using a combination of several clinically

available drugs, including rapamycin. Whether aging is a disease depends on arbitrary definitions of both

disease and aging. For treatment purposes, aging is a deadly disease (or more generally, pre disease), despite

being a normal continuation of normal organismal growth. It must and, importantly, can be successfully

treated, thereby delaying classic age related diseases such as cancer, cardiovascular and metabolic diseases,

and neurodegeneration.
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over a 24-year follow-up [25, 26]. Normal glucose 

levels (<100 mg/dl) associated with hyperinsulinemia is 

pre-pre-diabetes [27]. Hyperinsulinemia may in turn be 

driven by mTOR signaling [19], which suggests a state 

of pre-pre-pre-diabetes in which both glucose and 

insulin levels are normal. The condition that we can call 

pre-pre-diabetes is associated with future diabetes, 

cardiovascular disease and the all cause mortality rate 

[28]. Preventive treatment with metformin has been 

initiated during these very early disease stages in obese 

adolescents [29]. 
 

Another example is hypertension (a disease), which is 

defined arbitrarily as blood pressure (BP) above 140/90 

mmHg. Pre-hypertension (or borderline hypertension) is 

defined as BP below 140/90 mmHg but higher than 

120/80 mmHg.  BP tends to increase with age, and 

those whose BP has not yet reached 140/90 (disease), or 

even 120/80 (pre-disease), may still have higher BP 

than they did when they were younger [30]. Mortality is 

associated with BP, even if it is lower than 140/90 [31]. 

Both pre-hypertension and pre-diabetes are age-related 

pre-diseases. Likewise, the asymptomatic stages of 

Alzheimer’s disease are also pre-disease.  
 

In pre-diseases, abnormalities have not reached the 

arbitrary diagnostic criteria of the diseases. So, aging 

consists of progression from (pre)-pre-diseases (early 

aging) to diseases (late aging associated with functional 

decline). Aging is NOT a risk factor for these diseases, 

as aging consists of these diseases: aging and diseases 

are inseparable (Figure 1). 
 

An aged appearance (e.g., grey hair, wrinkles, cushin-

goid body types and loss of muscles) are manifestations 

of pre-diseases. For example, an aged appearance may 

reflect hypercortisolism, sarcopenia, osteoporosis, skin 

pre-diseases and so on. And age-related skin lesions 

may herald pre-cancerous skin conditions [32].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is “healthy” aging? 
 

What then is aging without diseases, so called “healthy” 

aging. “Healthy” aging has been called subclinical 

aging [33], slow aging [18, 34] or decelerated aging  

[35], during which diseases are at the pre-disease or 

even pre-pre-disease stage. Diseases will spring up 

eventually.  “Healthy” aging is a pre-disease state in 

which asymptomatic abnormalities have not yet reached 

the artificial definitions of diseases such as hypertension 

or diabetes. Instead of healthy aging, we could use the 

terms pre-disease aging or decelerated aging. Further-

more, decelerated aging can be achieved pharmaco-

logically. For example, rapamycin decelerates aging, 

thereby making one healthier [36, 37].  

 

Currently, the term healthspan lacks clarity and 

precision especially in animals [38]. Although the 

duration of healthspan depends on arbitrary criteria and 

subjective self-rating, it is a useful abstraction.  In 

theory, a treatment that slows aging increases both 

healthspan (subclinical period) and lifespan, whereas a 

treatment that increases lifespan (e.g., coronary bypass, 

defibrillation) is not necessarily increase healthspan 

(Figure 1 in reference [33]).  The goal of both anti-

aging therapies and preventive medicine is to extend 

healthspan (by preventing diseases), thus extending 

total lifespan.  

 

Preventive medicine: a step towards anti-aging 

medicine 
 

Aging is the sum of diseases and pre-diseases. 

Treatments are generally more effective at pre-disease 

stages, associated with hyper-function, than at disease 

stages, associated with functional decline. As discussed 

in 2006, “rapamycin  will  prevent  diseases  rather  than  

cure complications of diseases. For example, rapamycin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Relationship between aging and diseases. When growth is completed, growth promoting

pathways increase cellular and systemic functions and thus drive aging. This is a pre pre disease stage,

slowly progressing to a pre disease stage. Eventually, alterations reach clinical disease definition,

associated with organ damage, loss of functions (functional decline), rapid deterioration and death.
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will not repair broken bones but might prevent osteo-

porosis.” [10]. In fact, rapamycin prevents osteoporosis 

[39]. 
 

The goal of preventive medicine is to prevent diseases 

by treating pre-diseases.  Thus, preventive medicine is a 

form of anti-aging therapy. Both preventive medicine 

and anti-aging therapy should prevent pre-diseases by 

treating “healthy” individuals. Some of the drugs used 

in preventive medicine include statins, aspirin, ACE 

inhibitors (e.g., lisinopril) and metformin, which can be 

repurposed as anti-aging drugs [40, 41]. And vice versa, 

rapamycin, an anti-aging drug, may become a corner-

stone of preventive medicine. As David Gems put it, 

“anti-aging treatment is any preventative approach to 

reduce late-life pathology. Its adoption would facilitate 

translation, since it would shift the emphasis to medical 

practice, particularly the introduction of preventative 

approaches.” [42]. 
 

To treat what is treatable 
 

The fact that aging is an obligatory part of the life of all 

organisms is not important. What is important is that 

aging is deadly and, most importantly, treatable. 

Consider an analogy. Is facial hair (beard) in males a 

disease? No of course, not. Still most men shave it, 

effectively “treating” this non-disease, simply because it 

is easily treatable. Is presbyopia (blurred near vision) a 

disease? It occurs in everyone by the age of 50 and is a 

continuation of developmental trends in the eye. It is 

treated as a disease because it is easily treatable with 

eye glasses. Unlike presbyopia, menopause in females 

is not usually treated because it is not easy to treat. 

Thus, the decision to treat or not to treat is often 

determined by whether it is possible to treat. It does not 

matter whether or not the target of treatment is called a 

disease.  
 

Aging is treatable   
 

As the simplest example, calorie restriction (CR) slows 

aging in diverse organisms, including primates [43-50]. 

Similarly, intermittent fasting (IF) and ketogenic diet 

(severe carbohydrate restriction) extend life span in 

mammals [48, 51-54]. CR (as well as carbohydrate 

restriction and IF fasting) improves health in humans 

[45, 48, 53, 55-62]. However, CR is unpleasant to most 

humans and its life-extending capacity is limited.  

Nutrients activate the mTOR (molecular Target of 

Rapamycin) nutrient-sensing pathway [63-65] and, as 

we will discuss mTOR drives aging, inhabitable by 

rapamycin. Rapamycin-based anti-aging therapies have 

been recently implemented by Dr. Alan Green 

(https://rapamycintherapy.com).  
 

Rapamycin and other rapalogs 
 

Rapamycin (Rapamune/Sirolimus), an allosteric 

inhibitor of mTOR complex 1 [63, 66], is a natural 

rapalog as well as the most potent and best studied 

rapalog.  Rapamycin-analogs such as everolimus, 

temsirolimus (a rapamycin prodrug) and deforolimus/ 

Ridaforolimus are also now widely used.   

 

Rapamycin, everolimus and deforolimus slow 

geroconversion [67-75].  It has been predicted that 

rapamycin would slow aging in mammals [10, 76]. 

Starting in 2009, numerous studies have demonstrated 

that rapamycin prolongs life in mice [75, 77-99], even 

when started late in life [77, 78, 97-99], or adminis-

trated transiently or intermittently [77, 88, 89, 95]. 

 

In these studies, rapamycin was most effective at high 

doses [88, 89, 93-96, 100-103]. Its effect and that of 

everolimus lingers after their discontinuation [104], 

even after a single dose [105]. What appears to be 

important is to reach high peak levels using a single 

high dose [93, 94].  

 

In non-human primates, chronic and/or intermittent 

rapamycin improves metabolic functioning [106]. In a 

randomized controlled trial, middle-aged companion 

dogs administrated rapamycin exhibited no further side 

effects as compared to dogs receiving the placebo 

[107]. 

 

Millions of patients with various diseases and 

conditions (e.g., organ transplant recipients) have been 

treated with rapamycin (Sirolimus). Typical dose of 

rapamycin in organ-transplant patients is 2 mg/day. 

Rapamycin in a single dose of 15 mg was administrated 

to healthy volunteers without adverse effects [108]. 

Similarly, a dose of 8 mg/m2 (around 16 mg) was also 

well tolerated in healthy male volunteers [109]. What is 

amazing is that the placebo group reported more “side 

effects” such as astenia than did the rapamycin group 

[109]. In yet another study, comparison to placebo 

revealed no real everolimus-induced side effects in the 

elderly [104]. Moreover, everolimus improves 

immunity [110] and reduces infections in elderly 

healthy humans [104]. In placebo-controlled studies, 

side effects of rapamycin and everolimus are 

manageable with dose reduction and interruption. 

Discontinuation due to toxicity was uncommon [111]. 

In volunteers (aged 70-95 years, mean age of 80 years), 

treatment with 1mg/daily of rapamycin for 8 weeks was 

safe [112]. Matt Kaeberlein suggests that conventional 

doses of rapamycin maybe sub-optimal for maximum 

life-extension [113]. I agree with this opinion. 
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Conventional drugs as anti-aging drugs 
 

Metformin is used not only to treat diabetes but also 

pre-diabetes in order to prevent diabetes [20-23]. 

Metformin decreases insulin-resistance and body 

weight and prevents diabetes, cancer and cardio-

vascular disease [21, 22, 114-119].  It is expected that 

metformin would extend life and, in fact, metformin 

does decrease all-cause mortality [119, 120]. 

Physicians generally do not think of metformin as an 

anti-aging drug, simply because it is expected that life 

will be extended, if diseases are prevented. In mice, 

metformin extends healthspan and lifespan [117, 121-

123]. It also extends the lifespan of C. elegans [124-

127], which do not suffer from human diseases. 

Gerontologists think of metformin as an anti-aging drug 

[121-130], and metformin can be combined with 

rapamycin [131]. 

 

Angiotensin II inhibitors 
 

Angiotensin-converting enzyme (ACE) inhibitors (e.g., 

Captopril, Lisinopril, Enalapril, Ramipril) and 

Angiotensin II receptor blockers (ARB) (e.g., Valsartan, 

Telmisartan, Losartan) are widely used to treat 

hypertension, which is a typical hyperfunctional 

disease. Vasoconstriction, cardiomyocyte hypertrophy, 

beta- and alpha- adrenergic hyperstimulation all lead to 

high blood pressure (systemic hyperfunction), which, in 

turn can contribute to stroke, myocardial infarction and 

renal failure. ACE inhibitors and ARBs decrease 

vasoconstriction and prevent cardiac hypertrophy. They 

are life-extending drugs because they treat deadly 

diseases.   

 

Notably, ACE inhibitors increase the lifespan in rodents 

with normal blood pressure [132-134], thereby acting as 

anti-aging drugs.  

 

Combinations of conventional drugs 
 

Combinations of aspirin, statins, beta-blockers and 

ACE inhibitors are given to aging individuals to 

prevent cardiovascular diseases [135]. On the other 

hand, these drugs extend life span in rodents and 

Drosophila [136]. 

 

Typical combinations (polypill) include an antiplatelet 

agent (aspirin), a statin and two blood pressure-lowering 

drugs such as lisinopril and a beta-blocker [137,138]. 

Such combinations are estimated to reduce the 5-year 

incidence of stroke by 50% [139]. Aspirin, statins, ACE 

inhibitors, beta-blockers and metformin prevent some 

types of cancer and pre-cancerous polyps [116-118, 

140-146].  

Treating aging by preventing diseases or 

preventing diseases by slowing aging 
 

As discussed, “aging is the sum of all age-related 

diseases” and this “sum is the best biomarker of aging” 

[17]. One could say that drugs prevent diseases by 

slowing aging. Alternatively, it could be said that 

prevention of diseases slows aging, which is the sum of 

all diseases and pre-diseases. If a drug prevents 

diseases, it will extend lifespan (apparently slowing 

down aging). If a drug slows down aging it will prevent 

diseases and extend healthspan [17, 147]. 

 

As suggested “narrow spectrum anti-aging treatments 

(e.g. the cardiovascular polypill) could establish a 

practice that eventually extends to broader spectrum 

anti-aging treatments (e.g. dietary restriction 

mimetics)”. [42].   

 

CONCLUSION 
 

It is commonly argued that aging should be defined as a 

disease so as to accelerate development of anti-aging 

therapies. This attitude is self-defeating because it 

allows us to postpone development of anti-aging 

therapies until aging is pronounced a disease by 

regulatory bodies, which will not happen soon. Aging 

does not need to be defined as a disease to be treated. 

Anti-aging drugs such as rapamycin delay age-related 

diseases. If a drug does not delay progression of at least 

one age-related disease, it cannot possibly be considered 

as an anti-aging drug, because it will not extend life-

span by definition (animals die from age-related 

diseases). It has been suggested [17], “in order to extend 

life span, an anti-aging drug must delay age-related 

diseases. … Once a drug is used for treatment of any 

one chronic disease, its effect against other diseases … 

may be evaluated in the same group of patients.” Aging 

can be treated as a pre-disease to prevent its progression 

to diseases. Rapamycin-based combinations include 

conventional life-extending drugs, which are used to 

treat and prevent age-related diseases. These com-

binations could be combined with modestly low-

calorie/carbohydrates diet, physical exercise and stress 

avoidance [40, 41]. And this approach is actually being 

used now to treat aging at Alan Green’s clinic in Little 

Neck, NY:  

http://roguehealthandfitness.com/rapamycin-anti-aging-

medicine-an-interview-with-alan-s-green-m-d/?print= 

pdf and https://rapamycintherapy.com 
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