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Aging has been targeted by genetic and dietary manipulation and by drugs in order to increase lifespan
and health span in numerous models. Metformin, which has demonstrated protective effects against several
age-related diseases in humans, will be tested in the TAME (Targeting Aging with Metformin) trial, as the initial

step in the development of increasingly effective next-generation drugs.

Introduction
Over the past decades, remarkable pro-
gress has occumed in the science of
aging in model organisms. Studies have
demonstrated that genetic pathways
modulate healthy lifespan in diverse spe-
cies across great evolutionary distance
and established that aging-related path-
ways constitute a target for intervention
(Barzilai et al., 2012; Longo et al., 2015).
Lifespan has been verifiably modulated
by genetic, pharmacologic, and dietary
interventions in multiple model systems.
With support from an R24 grant from
the NIA (J. Kirkland, N.B., S. Austad), we
gathered gerontologists with expertise in
the biology of aging and in clinical geriat-
rics to discuss ways to target aging in hu-
mans. This effort resulted in the design of
the study “Targeting Aging with Metfor-
min” (TAME). This trial has been under
reviews through several funding mecha-
nisms and has raceived planning funding
from the American Federation of Aging
Research. An intended consequence of
this effort is to create a paradigm for eval-
uation of pharmacologic approaches to
delay aging. The randomized, controlled
clinical trial we have proposed, if suc-
cessful, could profoundly change the
approach to aging and its diseases and
affect healthcare delivery and costs. If
TAME demonstrates that metformin mod-
ulates aging and its diseases, beyond an
isolated impact on diabetes, it would
pave the way for development of next-
generation drugs that directly target the
biology of aging. Here, we summarize
the major reasons why metformin was
chosen to initiate this research.

span and, most importantly, health span,
the period of life during which anindividual
is fully functional and free of chronic
illness. There is overwhelming evidence
that single gene mutations in nutrient-
sensing pathways, such as insulinfinsu-
lin-like growth factor (IGF) signaling
(Bartke et al., 2001) or the mechanistic
target of rapamycin (MTOR) signaling
pathways, extend lifespan and health
span in invertebrates. More importantly,
these pathways have been evaluated in
mammalian models, in which health span
and lifespan have been extended by ge-
netic manipulation or drugs (Johnson
etal., 2013). This raises hope for new inter-
ventions, including drugs that slow the
aging process and slow the appearance
of age-related disease by modulating
conserved pathways of aging, as further
discussed and developed in recent re-
views (de Cabo et al., 2014; Fontana and
Partridge, 2015; Fontana et al., 2010).

interventions to Prolong Lifespan

Recognizing that aging can be targeted,
the NIH developed the NIA Interven-
tions Testing Program (ITP). The ITP
tests diets, drugs, or other interventions
to see if they prevent disease and
extend lifespan in genetically heteroge-
neous {outbred) mice (http://www.nia.nih.
gov/research/dab/interventions-testing-
program-itp). This program is conducted
at multiple centers in order to control for
laboratory-specific environmental differ-
ences, and testing is done in both male
and female animals (Miller et al., 2007;
Nadon et al., 2008). Major findings of the
ITP include that nordihydroguaiaretic
acid and aspirin each increase lifespan

(Harison et al., 2014). Studies of rapamy-
cin {an mTOR inhibitor) have established
the most compelling evidence for tar-
geting aging. When rapamycin is ad-
ministerad late in life, it extends lifaspan
(Harrison et al., 2009; Miller et al., 2011),
slows aging in a dose-dependent manner,
shows differential effaects by sex (Wilkin-
son et al, 2012), and is synergistic with
matformin.

Metformin Modulates the Biology of
Aging and Health Span in Model
Organisms

Metformin is a drug approved to treat dia-
betes but appears to target a number of
aging-related mechanisms. Some mecha-
nisms are relevant to glucose metabolism,
but with respect to aging these may not
be the most important ones. Metformin's
multiple aging-relevant actions at the
cellular and organismal levels are de-
picted in Figure 1. Specifically for aging,
metformin leads to decreased insulin
levels, decreased IGF-1 signaling (Liu
et al., 2011), inhibition of mTOR (Kickstein
et al., 2010; Nair et al., 2014; Pérez-Re-
vuelta et al., 2014), inhibition of mitochon-
drial complex 1 in the electron transport
chain and reduction of endogenous pro-
duction of reactive oxygen species (ROS}
(Batandier et al., 2006; Bridges et al.,
2014; Zheng et al, 2012), activation
of AMP-activated kinase (AMPK) (Cho
et al.,, 2015; Duca et al.,, 2015; Foretz
et al.,, 2010; Lien et al., 2014; Lu et al.,
2015; Zheng et al., 2012), and reduction
in DNA damage (Algire et al., 2012). Met-
formin favorably influences metabolic
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Figure 1. Metformin Targets Multiple Pathways of Aging

The figure depicts schematically the cument conssnsus within the biology of aging commundty as to
patmvays that are Important In order to target aging and indicates at which points metformin has been
shown to have effects (see text). Key take-away: outside of the cell (1, top), metformin bas been shown to
affect the receptors for cytokines, insulin, KGF-1, and adiponectin, all pathways that are activated with
aging and, when modulated, are assoclated with longavity. (1) Intracellular (2, midaie) metformin inhipits
the inflammatory pathway and activates AMPK, increasing inhibition of mTOR, which seems to be a major
target to medulate aging. Through some aof these mechanisms, It alse modulates oxidative stress and
rermoves senescent cells (the mitechondrial pathways are not shown, and the mechanisms by which
matformin inducas sansscent cell removal remain unclear}. {2) Thess processes jointly (3, bottom) affect
Inflammaticn, celiular survival, stress defense. autophagy, and protein syntheals, which are major blo-
legical outcomes associated with agingfongevity, Adapted from Sarzilai et 2l (2012).

atal., 2011), and cellular senescence (Jad-
hav et al., 2013; Moiseeva et al., 2013). In
C. elegans metformin extends lifespan by
several possible mechanisms including
the alteration of the microbiome, specif-
icalty by changing microbial folate and
methionine metabolism (Cabrelro et al.,
2013). To date, there is no avidence for
such effects in humans. Also, other inves-
tigators have suggested additional mech-
anisms for metformin actions (De Haes
et al., 2014; Onken and Driscoll, 2010)
supporting widely pleotropic effects.

It is currently unclear whether metfor-
min has multiple effects on multiple path-
ways or whether its observed effects
reflect downstream consequences of a
primary action on a single mechanism of

inhibit mitochondrial complex 1. This inhi-
bition may have multiple downstream
effacts, but impertantly, it would lead to
a change in the AMP/ATP ratio, which
then activates AMPK. This activation
maybe relevant to metformin’s known
effect on hepatic glucose production
(through decreased gluconeogenesis),
but it also may suppress lipid synthesis
and exert insulin-sensitizing effects, re-
sulting in decreased plasma insulin levels
and decreased mTOR activity. However,
it is also possible that the singular effect
of metformin has not yet been identified,
and therefore metformin’s mechanisms
of action are worth further investigation.
Beyond these cellular processes, there
is a growing body of evidence that metfor-

9/15/20, 8:07 AM

formin to the diet {Anisirmov et al., 2008,
2011; Cabreiro et al., 2013; De Haes
et al,, 2014}, It increases mean lifespan
in female outbred mice by ~40% (Anisi-
mov et al., 2008). When started early in
life, mean lifespan was increased by
14%, but with initiation at older ages,
this effect declined (Anisimov et al,
2011). Metformin delays the onset of car-
cinoma and extends lifespan by a mean of
8% in a breast cancer model (Anisimoyv
et al, 2010), and extends lifespan by
~20% in a madel of Huntington's disease
(Ma et al., 2007} only in males. A more
recent study (Martin-Montalvo et al,,
2013) demonstrated that metformin in-
creased lifespan by 4%-6% in different
mouse breeds. The effects on health
span indices such as time on rotarod, dis-
tance on treadmill, open field tests, cata-
ract index, oral glucose tolerance tests,
insulin tolerance, and cognitive function
(Allard et al., 2016) were improved by
~30%. As expected in these studies,
metformin also increased AMPK activity
and increased antioxidant protaction, re-
sulting in reductions in both chronic
inflammation and accumulation of oxida-
tive damage (Martin-Montalvo et al,,
2013), all of which may contribute to
health span and lifespan seen in animal
models.

Not all studies have shown similar ef-
fects of metformin on life or health span.
Feeding metformin to Drosophila resulted
in a robust activation of AMPK and re-
duced lipid stores, but did not increase
lifespan (Slack et al., 2012). One possibility
is that the dose of metformin in this study
was toxic. The dose of 1 mM is well above
the comparable dose range in humans,
and indeed doses higher than this
increased mortality. This is also the case
in mammals. When using a 10-fold in-
crease in the dose that showed benefit in
mice, mortality increased (Martin-Mon-
talvo et al., 2013). Smith et al. (2010) did
not demonstrate increased lifespan in
metformin-treated rats, although the high
dose used (~15times the dose used in hu-
mans) may have been toxic. Additionally,
the investigators used caloric restriction
as a positive control and failed to observe
the expected increased lifaspan.

Human Studies of Metformin that
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with fewer age-related diseases in gen-
eral, rather than merely the decreased
incidence of a single disease. Data from
several randomized clinical trials and mul-
tiple observational studies provide evi-
dence for such an effact, which would
not be expected from glucose lowering
alone.

Clinical Trials

The Diabetes Prevention Program (DPP).
The DPP was a randomized trial in U.S.
adults at high risk for T2DM by virtue of
obesity and impaired glucose tolerance
(Knowler etal., 2002). Over 3,000 subjects
were randomly assigned to placebo, met-
formin (850 mg twice daily), or a lifestyle-
modification program. Metformin reduced
the incidence of T2DM by 31 % compared
to placebo over a mean follow-up of ~.3
years and was effective in all age cate-
gories in preventing diabetes, defined by
HbAIC level, including the ~20% who
were age 60 or older at baseline (Knowler
etal., 2015). Further, metformin treatment
was associated with improvement in car-
diovascular disease (CVD) risk factors
(Goldberg et al,, 2013; Haffner et al.,
2005)and subclinical atherosclerosis (cor-
onary artery calcium) in male participants
(Goldberg et al., 2015).

The United Kingdom Prospective Dia-
betes Study. Patients with T2DM allo-
cated to metformin compared with
conventional treatment had risk reduction
of ~20% (p = 0.032) for CVD and 42% (p =
0.017) for diabetes-related death (UKPDS
Group, 1998). This evidence from UKPDS
provides rationale for metformin’s de-
signation as first-line therapy for most
patients with T2DM.

Other Tnals. In the HOME trial of insulin-
treated T2DM patients, addition of metfor-
min resulted in 40% reduction (compared
with placebo) in a CVD composite after 4
years of follow-up (Kooy et al., 2009). In
nen-diabetic subjects, the GIPS Il study
(Lexis et al., 2014} failed to demonstrate
the benefit of short-term metformin treat-
ment (4 months) on left ventricular ejection
fraction, major adverse cardiovascular
events, and mortality in post-myocardial
infarction patients, and the CAMERA trial
(Preiss et al., 2014) showed no effect of
metformin (18 months) on carotid intimal
medial thickness.

Observational Studies
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out (e.g., most studies have been con-
ducted in patients with diabetes and
include an active comparator, which
could itself be cardio-toxic). Metformin’s
potential CVD benefits—particularly in
the area of primary prevention—ramain
an active area of research, including
an ongoing randomized trial in the UK
(The Glucose Lowering In Non-diabe-
tic hyperglycaemia Trial, GLINT, http://
voww.isrctn.com/ISRCTN34875079; An-
fossi et al., 2010; Whittington et al., 2013).
Observational Studles Suggest
Metformin Decreases Cancer
incidence

Several epidemiologic studies have
shown that metformin use is associated
with reduced cancer incidence and mor-
tality (Landman et al., 2010; Lee et al.,
2011; Libby et al., 2009; Monami et al.,
2011; Tseng, 2012). While one meta-anal-
ysis (Stevens et al., 2012) did not show
that metformin prevents cancer, a more
thorough analysis that included more
data and accounted for heterogeneous
comparators showed that overall cancer
incidence was reduced by 31% and can-
cer mortality by 34% (Gandini et al.,
2014). There is also evidence from studies
performed both in vitro and in vivo of met-
formin’s role in attenuating tumorigenesis
(Anisimov and Bartke, 2013; Karnevietal.,
2013; Liu et al., 2011; Quinn et al., 2013;
Salani et al., 2012; Tosca et al., 2010).
The mechanisms proposed relate to
reduced insulin levels, improved insulin
action, decreased IGF-1 signaling, and
activation of AMPK. Numerous ongoing
studies are testing the effect of metformin
as adjuvant cancer therapy, with a
racently published trial showing negative
results in advanced pancreatic cancer
(Kordes et al.,, 2015). Although no trials
yet have reported effacts of chronic treat-
ment on cancer prevention, studies in
early-stage cancer or pra-malignancy
suggest this may be fruitful (DeCensi
et al., 2015).

Association of Metformin with
Better Cognitive Function

Emerging evidence suggests that metfor-
min may preserve cognitive function. In
the Singapore Longitudinal Aging Study,
metformin use was associated with a
51% reduced risk of cognitive impairment
{defined by modified Mini-Mental Status

9/15/20, 8:07 AM
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lowest risk was seen in those with
longer-term (> 6 years) metformin use
(Ng et al., 2014). A large observational
study of metformin-treated T2DM pa-
tients reported lower rates of dementia
than in those treated with other diabetes
medications (Cheng et al., 2014). One
study suggested that T2DM patients
treated with metformin had increased
risk for poor cognitive performance
{Moore et al., 2013); however, it had a
number of methodological flaws (Alagiak-
rishnan et al., 2013) and has not been
replicated. In one small clinical trial,
T2DM patients with depression (n = 58)
were treated with metformin or placebo
for 24 weeks (Guo et al., 2014). The met-
formin group showed improved cognitive
performance and reduced depressive
symptoms, concurent with improved
glycemic control. In an unpublished trial,
non-diabetic subjects (n = 80) with mild
cognitive impairment showed significant
improvements in some cognitive domains
after 12 months of metformin treatment
(Luchsinger et al., 2016). No definitive
trials have been conducted.
Association of Metformin with
Decreased Mortality

A recent study (Bannister et al.,, 2014)
used retrospective observational data
from the UK Clinical Practice Research
Datalink. Patients with T2DM who were
treated with metformin or sulphonylurea
(SU) monotherapy were compared to
separate age- and sex-matched control
groups without diabetes. SU-treated pa-
tients had lower survival than both
matched non-diabetic controls and met-
formin-treated diabetic patients. Surpris-
ingly, metformin-treated diabetic patients
had survival rates similar to (and, among
those age = 70, even better than) their
matched non-diabetic control group,
despite the fact that the diabetic patients
were more chese and had greater co-
morbidities at baseline. Mortality benefits
have also been described in other obser-
vational studies and long-term follow-up
of the UKPDS cohort, which showed
36% reduction in all-cause mortality in
the metformin treatment group (p =
0.011) (UKPDS Group, 19398). Not all
studies have been positive —for example,
an analysis from the Medicare Current
Beneficiary Survey showed only a non-
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Essay

Considerations in Designing Human
Metformin Trials

Dosing. While metformin can be prescribed
at dosages of up to 2,250 mg/day, no
further effects of decreasing glucose are
noted after 1,600-1,700 mg/day. After a
single oral dose, metformin is rapidly
distributed to many tissues following partial
absorption by the small intestine, but the
luminal concentration in the gastrointes-
tinal tract remains high. After a single
1.5 g dose, the peak plasma concentration
of 18 mM occurs in 3 hr, with a mean
plasma half-life of about 20 hr (Foretz
etal., 2014). It is suggested, however, that
an equivalent dose for mice would be up
to 10-fold higher. Studies on biodistribution
of metformin in mice showed accumulation
mainly in the gastrointestinal tract, kidney,
and liver.

Safety. Metformin has been used with
an excellent safety record for over 60
years. Side effects are monitored closely
within clinical trials, and the safety of met-
formin use in DPP/DPPOS was reported
on in 2012, when over 18,000 patients-
years of follow-up had accrued, and by
which time ~20% of the cohort was age
70 or older (mean age ~64). There were
no cases of lactic acidosis or significant
hypoglycemia (Diabetes Prevention Pro-
gram Research Group, 2012). Mild
anemia occurred in ~12% of metformin-
treated participants versus ~8% in the
placebo group (p = 0.04). Vitamin B12
deficiency occurred in ~7% of metformin
group versus 5% in placebo group after
13 years; risk of B12 deficiency increases
with duration of use but was not greater in
older compared with younger subjects in
DPPOS (Lalau et al., 1980). Further, the
risk of lactic acidosis appears to be
related to renal function, not age per se,
and is cumently considered to be very
low (Aroda et al., 2016).

In the TAME study, we plan to enroll
3,000 subjects, ages 65-79, in ~14 cen-
ters across the U.S. Rather than study
the effects of metformin on each separate
condition, we will measure time to a new
occurrence of a composite outcome that
includes cardiovascular events, cancer,
dementia, and mortality. TAME will also
assess important functional and geriatric
end points.

If successful, TAME will mark a para-
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opment of even better pharmacologic ap-
proaches that will ultimately reduce
healthcare costs related to aging.
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